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Generic
Spectroscopy Arrangements:

Why engineer 
hyperspectral sources?

(since most spectroscopic measurements
can be made using only 

a light bulb and a spectrometer)

1. Efficient at high-resolution

2. Simple, rugged, compact, all-fiber…

4. Can complement spectrometers

Spectral resolution decoupled from collection 
etendue.  Examples: in fluorescence, collect > 1 Sr
from a 1-mm emitter and still maintain < 1 GHz 
spectral resolution in an excitation scan; likewise in 
absorption, beamsteering does not compromise 
spectral resolution

Hyperspectral lasers more readily multiplexed 
than hyperspectral detectors, e.g. for multi-beam 
tomography, multi-channel sensors to cover ultra-
broad spectral ranges

Ultimately, may want to combine hyperspectral
light sources and detectors (e.g., for combined 
excitation-emission fluorescence spectroscopy)

3. Compatible with simple detectors
Not paced by camera technology (limited readout 

rates, usually optimized for visible range, etc.)

5. Ordered light reduces natural beating
For 5 µs-duration measurement at 1 cm-1

resolution, thermal light has a fundamental peak-
to-peak noise level of ~ 1%
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Why hyperspectral?
Broad spectral coverage (> 200 cm-1):

High-resolution (< 1 cm-1):

High-speed (> 1 spectrum every 50 µs):

multiple species with a single source 
ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 

fluids, liquids, solids, etc.)
reality checks (are you really measuring what you think you’re measuring?)
high-resolution OCT: 1300-1500 nm (1025 cm-1 range) provides 3.7 µm resolution 

whereas 1300-1310 nm (59 cm-1 range) provides 64 µm resolution

higher SNR in gas spectroscopy 
discrimination of multiple species 
large possible ranging depth in OCT: 1 cm-1 resolution enables 3.7mm-deep images, 

20 cm-1 resolution only allows 185µm-deep images

Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
Compatibility with transient experiments (explosions, shock tubes, 

pulsed magnetic fields, video-rate OCT, etc.)
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Some sources developed: Key measurements: Application in an engine:
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